Systematic name M15926
Brief description Trefoil Factors Initiate Mucosal Healing
Full description or abstract Maintaining the integrity of the gastrointestinal tract despite the continual presence of microbial flora and injurious agents is essential. Epithelial repair requires restitution and regeneration. During restitution, epithelial cells spread and migrate across the basement membrane to re-establish surface-cell continuity, a process that is independent of cell proliferation. Epithelial continuity depends on a family of small abundant secreted proteins, the trefoil factors (TFFs). The trefoil factor (TFF) family comprises the gastric peptides pS2/TFF1 and spasmolytic peptide (SP)/TFF2, and the intestinal trefoil factor (ITF)/TFF3. Their fundamental action is to promote epithelial-cell restitution within the gastrointestinal tract. TFFs are abundantly secreted onto the mucosal surface by mucus-secreting cells. Their expression is rapidly and coordinately upregulated at the margins of mucosal injury. Secreted TFF acts on adjacent mucosal cell populations either extracellularly (augmenting barrier function) or intracellularly (transcriptional and signalling events). TFF response elements in TFF gene promoters allow increases in TFF expression through auto-induction and cross-induction of other TFFs, in addition to mucin expression and possibly tumor suppression. Cell migration is the result of integrated disruption of cellcell and cellsubstratum adhesion and prevention of apoptosis through cell detachment. Epithelial movement therefore requires integration of motogenic and cell-survival signals. This is achieved by activation of several intracellular signalling pathways that converge on ERK/MAPK and possibly NF-B activation. Serine phosphorylation of the extracellular signal-regulated kinases (ERKs)/mitogen-activated protein kinases (MAPKs) 1 and 2 is central to trefoil factor -mediated signalling, lying downstream of EGFR activation and possibly FAK activation (through recruitment of GRB2 and SOS). Cell migration might result from cooperation between ERK/MAPKs and Rho proteins, FAK activation, beta-integrin clustering and beta-catenin activation. Abrogation of cell death has been shown to require both PI3K activation and ERK/MAPK activation; the former operates through serine/threonine phosphorylation of AKT/protein kinase B, serine phosphorylation of BAD (BCL-2 agonist of cell death) and inhibition of mitochondrial cytochrome c release and formation of the apoptosome (APAF1, caspase-9 (CASP9) and cytochrome c (CYT-c). Translocation of phosphorylated ERK/MAPK to the nucleus leads to amplification and de-restriction of TFF expression to ensure sustained action.
Collection C2: curated gene sets
      CP: canonical pathways
            CP:BIOCARTA: BioCarta gene sets
Source publication  
Exact source  
Related gene sets  
External links
Filtered by similarity
Organism Homo sapiens
Contributed by BioCarta
Dataset references  
Download gene set format: grp | text | gmt | gmx | xml
Compute overlaps (show collections to investigate for overlap with this gene set)
Compendia expression profiles GTEx compendium
Human tissue compendium (Novartis)
Global Cancer Map (Broad Institute)
NCI-60 cell lines (National Cancer Institute)
Advanced query Further investigate these 24 genes
Gene families Categorize these 24 genes by gene family
Show members (show 74 members mapped to 24 genes)
Version history 7.0: Changed members. Upgraded to final version of Biocarta.

See MSigDB license terms here. Please note that certain gene sets have special access terms.