Human Gene Set: DAZARD_UV_RESPONSE_CLUSTER_G1


Standard name DAZARD_UV_RESPONSE_CLUSTER_G1
Systematic name M9375
Brief description Cluster G1: genes most highly up-regulated in NHEK cells (normal keratinocyte) between 6 h and 12 h after UV-B irradiation.
Full description or abstract To gain insight into the transformation of epidermal cells into squamous carcinoma cells (SCC), we compared the response to ultraviolet B radiation (UVB) of normal human epidermal keratinocytes (NHEK) versus their transformed counterpart, SCC, using biological and molecular profiling. DNA microarray analyses (Affymetrix), approximately 12000 genes) indicated that the major group of upregulated genes in keratinocytes fall into three categories: (i). antiapoptotic and cell survival factors, including chemokines of the CXC/CC subfamilies (e.g. IL-8, GRO-1, -2, -3, SCYA20), growth factors (e.g. HB-EGF, CTGF, INSL-4), and proinflammatory mediators (e.g. COX-2, S100A9), (ii). DNA repair-related genes (e.g. GADD45, ERCC, BTG-1, Histones), and (iii). ECM proteases (MMP-1, -10). The major downregulated genes are DeltaNp63 and PUMILIO, two potential markers for the maintenance of keratinocyte stem cells. NHEK were found to be more resistant than SCC to UVB-induced apoptosis and this resistance was mainly because of the protection from cell death by secreted survival factors, since it can be transferred from NHEK to SCC cultures by the conditioned medium. Whereas the response of keratinocytes to UVB involved regulation of key checkpoint genes (p53, MDM2, p21(Cip1), DeltaNp63), as well as antiapoptotic and DNA repair-related genes - no or little regulation of these genes was observed in SCC. The effect of UVB on NHEK and SCC resulted in upregulation of 251 and 127 genes, respectively, and downregulation of 322 genes in NHEK and 117 genes in SCC. To further analyse these changes, we used a novel unsupervised coupled two-way clustering method that allowed the identification of groups of genes that clearly partitioned keratinocytes from SCC, including a group of genes whose constitutive expression levels were similar before UVB. This allowed the identification of discriminating genes not otherwise revealed by simple static comparison in the absence of UVB irradiation. The implication of the changes in gene profile in keratinocytes for epithelial cancer is discussed.
Collection C2: Curated
      CGP: Chemical and Genetic Perturbations
Source publication Pubmed 12771951   Authors: Dazard JE,Gal H,Amariglio N,Rechavi G,Domany E,Givol D
Exact source Table 2S: Cluster#=G1
Related gene sets (show 11 additional gene sets from the source publication)

(show 70 gene sets from the same authors)
External links
Filtered by similarity ?
Source species Homo sapiens
Contributed by John Newman (University of Washington)
Source platform or
identifier namespace
HUMAN_SEQ_ACCESSION
Dataset references  
Download gene set format: grp | gmt | xml | json | TSV metadata
Compute overlaps ? (show collections to investigate for overlap with this gene set)
Compendia expression profiles ? NG-CHM interactive heatmaps
(Please note that clustering takes a few seconds)
GTEx compendium
Human tissue compendium (Novartis)
Global Cancer Map (Broad Institute)
NCI-60 cell lines (National Cancer Institute)

Legacy heatmaps (PNG)
GTEx compendium
Human tissue compendium (Novartis)
Global Cancer Map (Broad Institute)
NCI-60 cell lines (National Cancer Institute)
Advanced query Further investigate these 62 genes
Gene families ? Categorize these 62 genes by gene family
Show members (show 70 source identifiers mapped to 62 genes)
Version history 3.0: Renamed from UVB_NHEK1_C1

See MSigDB license terms here. Please note that certain gene sets have special access terms.